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Quality Inference In Federated

Learning with Secure Aggregation
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FEDERATED LEARNING WITH

SECURE AGGREGATION

* Train locally, share noisy models
* Noise cancels out during aggregation
« ... protect individual privacy
« ... without accuracy loss
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GOAL

Study the possibility of inferring
the quality of the individual datasets when
Secure Aggregation is in place.

 Quality Inference is different from
poisoning attack detection, as that
merely  Iinterested In classifying
participants as malicious or benign,
while our goal is to enable the fine-
grained differentiation of the honest
participants with respect to input quality.

SCORING RULES

« The Good: each participant contributing In
a round which improves the model more
than the previous round receives +1.

« The Bad: each participant contributing in
a round which improves the model less
than the following round receives -1.

« The Ugly: each participant contributing in
a round which does not improve the model
receives -1.

RESULTS

The round-wise change of the participants’
scores: the lighter the better (the darker the
worse) corresponding dataset quality.

Due to the design of federated learning, naive secure aggregation is not safe:
a few simple quality scoring rules were able to successfully recover the relative ordering of the participant’s dataset qualities.
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APPLICATIONS

* On-the-fly performance boosting:
carefully weighting the participants
based on the inferred quality smooths
the learning curve as well as improves
the trained model’s accuracy.

e Misbehavior detection: the scores
can be used to detect both malicious
misbehavior and free-riding.

 Shapley-Value Approximation: The
scoring rules might be wused for
contribution score computation, which
IS currently not solved when Secure
Aggregation is enabled.

Quality scores of the participants after
50 rounds where the data quality grows
with x axis.
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